Reactions of α -lithiated phosphinimines with PhCN; the crystal structure of $[K{N(H)C(Ph)C(H)P(Ph)_2=NSiMe_3}(tmen)]_2$ (tmen = $Me_2NCH_2CH_2NMe_2$)

Peter B. Hitchcock, Michael F. Lappert* and Zhong-Xia Wang

The Chemistry Laboratory, University of Sussex, Brighton BN1 9QJ, UK

Treatment of the α -lithiated phosphinimine Li{CH(R')P(R)₂=NSiMe₃} with benzonitrile yielded (*via* a trimethylsilyl or hydrogen 1,3 C \longrightarrow N shift) the trimethylsilyliminophosphoranylenamidolithium complex Li{N(R')C(Ph)C(H)P(R)₂=NSiMe₃} (R = Me, R' = SiMe₃ 1; R = Ph, R' = SiMe₃ 2; or R = Ph, R' = H 3). Complex 2 was transformed into the corresponding potassium complex 4 by an exchange reaction with KOBu⁴. Crystallisation of 4 from hexane in the presence of Me₂NCH₂CH₂NMe₂ (tmen) gave the tmen adduct 5 and a trace of the partially hydrolysed product [K{N(H)C(Ph)C(H)P(Ph)₂=NSiMe₃}(tmen)]₂ 6, which was characterised by a single crystal X-ray diffraction study as a dinuclear complex with each of the two potassium atoms in a different co-ordination environment. Complex 1 or 2 was hydrolysed to form the neutral iminophosphoranylenamine N(SiMe₃)C(Ph)C(H)P(R)₂N(SiMe₃)H 7 or 8, which showed (¹H NMR spectroscopy) the presence of hydrogen bonds.

Reactions of α -lithiated phosphinimines with several electrophiles have been explored. Thus, when an α -lithiated phosphinimine was treated with Me₃SiCl, Br₂ or certain organic electrophiles, a carbon-centred reaction was invariably observed. This was ascribed to the difference in nucleophilicity between the two ylidic positions.¹ Such reactions include alkylation,²⁻⁴silylation,⁴⁻⁷ bromination,³⁻⁴acylation,^{2,4,8} α -amino-alkylation^{3,9} and α -hydroxyalkylation.^{2,10} The reaction of an α -lithiated phosphinimine with an aryl nitrile yielded, after hydrolysis, the iminophosphoranylenamine, which when further hydrolysed by a solution of sulfuric acid led to the β -keto-phosphine oxide (Scheme 1);² but no attempt was made to separate the lithiated intermediate.

We report here our investigations of the addition reactions of $Li\{CH(R')P(R)_2=NSiMe_3\}$ (R = Me, $R' = SiMe_3$; R = Ph, $R' = SiMe_3$; or R = Ph, R' = H) and benzonitrile, the conversion of one of these adducts into the potassium analogue and crystal structural characterisation of $[K\{N(H)C(Ph)C(H)P(Ph)_2=NSiMe_3\}$ (tmen)]₂ (tmen = Me₂-NCH₂CH₂NMe₂).

Results and Discussion

The synthesis and reactions of complexes $Li{N(R')C(Ph)C(H)P(R)_2=NSiMe_3}$ (R = Me, R' = SiMe₃ 1; R = Ph, R' = SiMe₃ 2; or R = Ph, R' = H 3) are summarised in Scheme 2.

Treatment of the appropriate compound $Li{CH(R')P(R)_2=NSiMe_3}$ [obtained *in situ* from the phosphinimine $CH_2(R')P(R)_2=NSiMe_3$ and $LiBu^n$] with PhCN in Et_2O proceeded readily at room temperature. Complexes 1–3 were formed as colourless crystals (1), pale yellow solid (3) or colourless oil (2). A 1,3-trimethylsilyl (when $R' = SiMe_3$) or hydrogen (when R' = H) C \longrightarrow N migration was observed in these reactions. Mixing of 2 with KOBu^t in hexane afforded a white precipitate of the potassium analogue 4. Crystallisation of 4 with tmen in hexane produced colourless crystals of the tmen adduct 5. From the mother-liquor of 5, a few colourless crystals were

Scheme 1 Reagents and conditions: (*i*) LiNPrⁱ₂ or LiBuⁿ, -30 °C, tetrahydrofuran (thf); (*ii*) R'CN (R' = Ph or 4-MeC₆H₄); (*iii*) H₂O; (*iv*) H₂O-H₂SO₄

Scheme 2 Reagents and conditions: (*i*) PhCN, Et₂O, -50 °C to ca. 20 °C, 3 h; (*ii*) KOBu^t, hexane, ca. 20 °C, 3 h; (*iii*) tmen, hexane, ca. 20 °C; (*iv*) H₂O, thf, -20 °C to ca. 20 °C, 1 h

further separated; a single-crystal X-ray diffraction study showed that these were those of another potassium complex **6**. Formation of the very small amount of complex **6** is assumed to have been the result of partial hydrolysis of

^{*} E-Mail: m.f.lappert@sussex.ac.uk

Table 1 Selected intramolecular distances (Å) and angles (°) for complex 6

K(1)-N(1) K(1)-N(3) K(1)-N(5) K(1)-C(2) K(1)-C(25) K(2)-N(2)	3.137(8) 3.033(8) 2.973(11) 3.072(9) 3.116(9) 2.858(8)	K(1)-N(2) K(1)-N(4) K(1)-C(1) K(1)-C(24) K(2)-N(1) K(2)-N(4)	2.874(9) 3.020(8) 3.209(10) 3.251(10) 2.978(8) 2.745(8)	K(2)-N(7) P(1)-N(1) P(2)-N(3) Si(2)-N(3) N(2)-C(2) C(1)-C(2)	3.028(10) 1.568(8) 1.593(8) 1.669(8) 1.302(11) 1.418(12)	K(2)-N(8) P(1)-C(1) P(2)-C(24) Si(1)-N(1) N(4)-C(25) C(24)-C(25)	2.852(11) 1.712(9) 1.741(9) 1.701(8) 1.315(11) 1.368(12)
$\begin{array}{l} N(2)-K(1)-N(5) \\ N(5)-K(1)-N(4) \\ N(5)-K(1)-N(3) \\ N(2)-K(1)-C(2) \\ N(4)-K(1)-C(2) \\ N(2)-K(1)-C(25) \\ N(2)-K(1)-C(25) \\ N(4)-K(1)-C(25) \\ N(5)-K(1)-N(1) \\ N(3)-K(1)-N(1) \\ N(3)-K(1)-N(1) \\ N(5)-K(1)-N(1) \\ N(3)-K(1)-C(1) \\ N(3)-K(1)-C(1) \\ N(3)-K(1)-C(1) \\ N(2)-K(1)-C(1) \\ N(2)-K(1)-C(1$	$144.4(3) \\137.8(3) \\99.0(3) \\25.0(2) \\102.8(2) \\102.8(2) \\102.4(2) \\24.7(2) \\127.4(3) \\106.0(3) \\154.4(2) \\97.7(2) \\102.5(3) \\127.3(2) \\139.3(3) \\120.0(2) \\120.0(2) \\120.0(2) \\120.0(2) \\137.0(2) \\120.0(2) \\137.0(2) \\139.0(3) \\120.0(2) \\137.0(2) \\139.0(3) \\120.0(2) \\137.0(2) \\139.0(3) \\139.0(3) \\139.0(3) \\130.0(2) \\139.0(3) \\130.0(2) \\139.0(3) \\130.0(2) \\139.0(3) \\130.0(2) \\139.0(3) \\130.0(2) \\139.0(3) \\130.0(2) \\139.0(3) \\130.0(2) \\139.0(3) \\130.0(2) \\130.0(2) \\130.0(3) \\130.0(2) \\130.0(3) \\130.0(2) \\130.0(3) \\130.0(3) \\130.0(2) \\130.0(3)$	$\begin{array}{l} N(2)-K(1)-N(4)\\ N(2)-K(1)-N(3)\\ N(4)-K(1)-N(3)\\ N(5)-K(1)-C(2)\\ N(3)-K(1)-C(2)\\ N(3)-K(1)-C(25)\\ N(3)-K(1)-C(25)\\ N(2)-K(1)-N(1)\\ N(4)-K(1)-N(1)\\ N(4)-K(1)-N(1)\\ N(2)-K(1)-C(1)\\ N(4)-K(1)-C(1)\\ N(4)-K(1)-C(1)\\ N(1)-K(1)-C(2)\\ N(1)-K(1)-C(2)\\ N(2)-K(1)-C(2)\\ N(3)-K(1)-C(2)\\ N(3)-K(1)-K(1)-C(2)\\ N(3)-K(1)-K(1)-C(2)\\ N(3)-K(1)-K(1)-C(2)\\ N(3)-K(1)-K(1)-C(2)\\ N(3)-K(1)-K(1)-K(1)-C(2)\\ N(3)-K(1)-K(1)-K(1)-K(1)-K(1)\\ N(3)-K(1)-K(1)-K(1)-K(1)-K(1)\\ N(3)-K(1)-K(1)-K(1)-K(1)\\ N(3)-K(1)-K(1)-K(1)-K(1)-K(1)\\ N(3)-K(1)-K(1)-K(1)-K(1)-K(1)-K(1)\\ N(3)-K(1)-K(1)-K(1)-K(1)-K(1)-K(1)\\ N(3)-K(1)-K(1)-K(1)-K(1)-K(1)-K(1)-K(1)-K(1$	$\begin{array}{c} 77.7(2)\\ 93.1(2)\\ 67.4(2)\\ 119.4(3)\\ 102.8(2)\\ 113.2(3)\\ 66.7(2)\\ 69.7(2)\\ 89.9(2)\\ 69.7(2)\\ 45.6(2)\\ 117.7(2)\\ 26.0(2)\\ 52/4(2)\\ 93.5(3)\end{array}$	C(2)-K(1)-C(24) $N(1)-K(1)-C(24)$ $N(4)-K(2)-N(8)$ $N(8)-K(2)-N(1)$ $N(4)-K(2)-N(1)$ $N(4)-K(2)-N(7)$ $N(2)-K(2)-N(7)$ $P(1)-N(1)-Si(1)$ $Si(1)-N(1)-K(2)$ $Si(1)-N(1)-K(1)$ $C(2)-N(2)-K(2)$ $K(2)-N(2)-K(1)$ $P(2)-N(3)-K(1)$ $C(25)-N(4)-K(2)$	$143.3(2) \\118.9(2) \\99.2(3) \\87.3(3) \\150.6(3) \\114.0(3) \\145.5(3) \\134.6(5) \\108.8(4) \\121.5(4) \\137.7(6) \\82.6(2) \\99.8(3) \\132.7(6) \\81.9(2)$	$\begin{array}{c} C(25)-K(1)-C(24)\\ C(1)-K(1)-C(24)\\ N(4)-K(2)-N(2)\\ N(4)-K(2)-N(1)\\ N(2)-K(2)-N(1)\\ N(2)-K(2)-N(7)\\ N(1)-K(2)-N(7)\\ P(1)-N(1)-K(2)\\ P(1)-N(1)-K(1)\\ K(2)-N(1)-K(1)\\ C(2)-N(3)-Si(2)\\ Si(2)-N(3)-K(1)\\ C(25)-N(4)-K(1)\\ C(25)-N(4)-F(1)\\ \end{array}$	$\begin{array}{c} 24.7(2)\\ 163.3(3)\\ 82.7(2)\\ 98.9(2)\\ 72.3(2)\\ 61.2(3)\\ 129.6(3)\\ 101.1(3)\\ 97.9(4)\\ 76.4(2)\\ 86.0(6)\\ 134.1(5)\\ 126.0(4)\\ 81.8(5)\\ 122.9(7)\end{array}$
N(4)-K(1)-C(24)	45.7(2)	N(3)-K(1)-C(24) N(3)-K(1)-C(24)	52.8(2)	N(2) - C(2) - C(1)	122.0(8)	C(2) - C(1) - P(1) C(25) - C(24) - P(2)	126.1(7)

complex 5. The anionic ligand of 6 is identical to that in 3. However, attempts to prepare 6 by reaction of 3 with KOBu^t in hexane or benzene and then to crystallise it as a tmen complex were unsuccessful; instead, an unidentified yellow, crystalline compound was obtained. Treatment of complex 1 or 2 with 1 equivalent of H₂O in thf gave in high yield $\overline{N}(\text{SiMe}_3)\text{C}(\text{Ph})\text{C}(\text{H})\text{P}(\text{R})_2\text{N}(\text{SiMe}_3)\text{H}$ as colourless crystals 7 (R = Me) or pale yellow oil 8 (R = Ph).

The oily complex 2 was characterised solely by its conversion into the potassium analogue 4, while each of the crystalline complexes 1 and 3 gave satisfactory microanalytical data as well as ¹H, ¹³C-{¹H}, ³¹P-{¹H} and ⁷Li-{¹H} NMR spectra. The ¹H NMR spectrum of Li{N(SiMe₃)C(Ph)C(H)P(Me)₂=NSiMe₃} 1 showed two sets of broad signals for the phosphorus-bound methyl groups. A variable-temperature ¹H NMR study showed that the two sets of signals observed at 291 K coalesced to a sharp singlet when the temperature was raised to 348 K. This is ascribed to the fact that at the lower temperature the lithium atom is firmly attached to the ligand giving rise to distinct axial and equatorial P-methyl groups, while at the higher temperature rapid inversion occurs. The ¹³C-{¹H} NMR spectrum of 1 provided evidence for the migration of the trimethylsilyl group. In the 13C-{1H} NMR spectra of Li{CH(SiMe₃)P(Ph)₂=NSiMe₃} or k'{CH(SiMe₃)P(Me)₂=NSi-Me₃}, P-SiMe₃ coupling was observed for both trimethylsilyl groups, each appearing as a doublet.¹¹ However, in the ¹³C-{¹H} NMR spectrum of 1, only one silvlmethyl signal was a doublet, the other a singlet. Such 1,3-trimethylsilyl migrations from carbon to nitrogen have previously been observed in the reaction of $MCH(R)SiMe_3$ (M = Li or K; $R = Ph \text{ or } SiMe_3$) with a nitrile (Bu^tCN or PhCN), giving rise to \dot{M} {N(SiMe₃)C(Bu^t)C-HR}¹² or \dot{M} {N(SiMe₃)C(Ph)C(H)C(Ph)NSiMe₃}.¹³ However, for Li{CH(SiMe₃)P(R)₂=NSiMe₃}, no reaction with Bu^tCN occurred, even under reflux in thf; this is attributed to a steric effect.

The ¹H NMR spectrum of Li{N(H)C(Ph)C(H)P(Ph)₂=N-

Fig. 1 Molecular structure of $[K^{+}(N(H)C(Ph)C(H)P(Ph)_{2}=NSiMe_{3}]$ -(tmen)]₂ **6** with the atom numbering scheme

SiMe₃} **3** showed two equal intensity signals at δ 4.16 and δ 4.43. The former was a doublet, $J({}^{1}H^{-31}P)$ 24.3 Hz, and the latter a singlet (NH). This clearly shows that one of the CH₂ protons had migrated from carbon to nitrogen in the course of the reaction of Li{CH₂P(Ph)₂=NSiMe₃} with PhCN. The ${}^{13}C-{}^{1}H$ NMR spectrum showed the silylmethyl signal as a doublet. This imples that the trimethylsilyl group lies on the nitrogen atom attached to the phosphorus, rather than on the more remote nitrogen atom. The ${}^{1}H$, ${}^{13}C-{}^{1}H$ and ${}^{31}P-{}^{1}H$ NMR spectra of the potassium compounds **4** and **5** were consistent with the structures shown in Scheme 2. Their ${}^{13}C-{}^{1}H$ NMR spectra showed a similar feature to that in complex **1**, in that only one silylmethyl was split by ${}^{31}P$ coupling.

Compounds 7 and 8 are neutral iminophosphoranylenamines. Their ¹H NMR spectra showed that the NH signals appeared at δ 8.39 (7) and 8.29 (8). The high frequency chemical shifts indicate the presence of hydrogen bonds in both molecules.

The molecular structure and the atom numbering scheme of $[K{N(H)C(Ph)C(H)P(Ph)_2=NSiMe_3}(tmen)]_2$ **6** are shown in Fig. 1. Selected bond distances and angles are presented in Table 1.

Crystalline **6** is a dinuclear molecule with each of the two potassium atoms in a different co-ordination environment. The atom K(1) has co-ordination number nine taking the N(H)C(Ph)C(H)-moiety to occupy three co-ordination sites and K(2) co-ordination number five. As a result of the very crowded environment around K(1), only one nitrogen atom of tmen is co-ordinated to this potasium atom. Unlike K(1), K(2)is bonded to a chelating tmen. It is also noteworthy that the ligand co-ordination is not $\eta^{\text{5}},$ there being no P–K bond. It seems that there is a combination of η^3 -azaallyl and phosphinimine co-ordination, the latter bonding to the potassium through the free-electron pair on nitrogen. The K-C bond lengths are in the range 3.072(9)-3.251(10) Å, but the K-N bond lengths vary rather more widely, from 2.745(8) to 3.137(8) Å. The P atom has a slightly disorted tetrahedral geometry. The mean P-N bond length of 1.58 Å is indicative of a double bond.¹⁴⁻¹⁶ The P(1)– $\check{C}(1)$ bond length [1.712(9) Å] is close to that of P(2)-C(24) [1.741(9) Å] and shows that the P-C bond is in between a formal single (1.83 Å) 14,15 and double (1.57 Å) 14 bond. There are no short $K \cdots H$ contacts in the vacant site trans to N(4). Intermolecular approach at this site is blocked by the phenyl group C(15)–C(20), and the shortest K(2) \cdots C contacts to this group are $K(2) \cdots C(15)$ 3.48 and $K(2) \cdots C(20)$ 3.45 Å.

Experimental

All reactions were performed under argon using standard Schlenk techniques. The thf and diethyl ether were dried using sodium–benzophenone; hexane and pentane were dried using sodium–potassium alloy. The NMR spectra were recorded on AC-P250, WM-360 or AMX-500 instruments, and the solvent resonances were used as the internal references for ¹H and ¹³C spectra; H₃PO₄ (85% aqueous solution) and LiCl (1 mol dm⁻³ aqueous solution) were the external references for ³¹P and ⁷Li NMR spectra, respectively. Infrared spectra were recorded on a Perkin-Elmer 1720 FT spectrometer as liquid films or Nujol mulls using KBr windows, and elemental analyses were carried out by Medac Ltd, Brunel University. Melting points were determined under argon in sealed capillaries on an electro-thermal apparatus and were uncorrected.

Preparations

The phosphinimines $CH_2(R)P(Ph)_2=NSiMe_3$. (*a*) R = H. A mixture of methyl(diphenyl)phosphine (10.0 g, 0.05 mmol) and trimethylsilyl azide (6.6 cm³, 0.05 mmol) was heated at 130 °C for 6 h with stirring. The unreacted starting materials were removed at 25 °C (10⁻⁵ Torr) leaving CH₃P(Ph)₂=NSiMe₃ (13.6 g, 95%), as a colourless oil. ¹H NMR (298 K, CDCl₃): δ 0.02 (s, 9 H, SiMe₃), 1.96 [d, 3 H, ²J(¹H-³¹P) = 12.7 Hz, CH₃], 7.46 (s, 6 H, Ph), 7.65-7.75 (m, 4 H, Ph).

(b) $R = SiMe_3$. A solution of LiCH₂SiMe₃ (50 cm³ of a 1 mol dm⁻³ solution in pentane, 0.05 mol) was added dropwise to a solution diphenylphosphorus(III) chloride (11.0 g, 0.05 mol) in tetrahydrofuran (50 cm³) at -78 °C with stirring. The mixture was allowed to warm to room temperature with stirring during 15 h. The precipitate was filtered off and solvent was removed from the filtrate in vacuo. The residue was distilled to yield CH₂(SiMe₃)PPh₂ (10.7 g, 78%), b.p. 99-101 °C (0.02 Torr). ¹H NMR (298 K, CDCl₃): δ 0.01 (s, 9 H, SiMe₃), 1.43 [d, 2 H, ${}^{2}J({}^{1}H-{}^{31}P) = 10.0$ Hz, CH₂], 7.34–7.36 (m, 6 H, Ph), 7.51–7.54 (m, 4 H, Ph). A mixture of CH₂(SiMe₃)PPh₂ (10.7 g, 0.039 mol) and trimethylsilyl azide (5.2 cm³, 0.039 mol) was heated at 130 °C for 6 h with stirring. The unreacted starting materials were removed at 25 °C (10^{-5} Torr), leaving a residue of CH₂(SiMe₃)P(Ph)₂=NSiMe₃ (13.7 g, 97.5%). ¹H NMR (298 K, CDCl₃): $\delta - 0.02$ (s, 9 H, SiMe₃), -0.01 (s, 9 H, SiMe₃), 1.69 [d, 2 H, ${}^{2}J({}^{1}H-{}^{31}P) = 15.3$ Hz, CH₂], 7.39–7.42 (m, 6 H, Ph), 7.64– 7.70 (m, 4 H, Ph).

Li{N(SiMe₃)C(Ph)C(H)P(Me)₂=NSiMe₃} 1. Benzonitrile (0.58 cm³, 5.69 mmol) was added dropwise to a stirred solution $Li{CH(SiMe_3)P(Me)_2=NSiMe_3}$ [from $CH_2(SiMe_3)P$ of $(Me)_2 = NSiMe_3^{16}$ (1.33 g, 5.68 mmol) and LiBuⁿ (3.6 cm³ of a 1.6 mol dm⁻³ solution in hexane, 5.68 mmol)] (1.37 g, 5.68 mmol) in diethyl ether (30 cm³) at ca. 20 °C. The solution was stirred for 4 h and the solvent was then removed in vacuo. The resultant solid was recrystallised from pentane to yield the colourless crystalline compound 1 (1.4 g, 72%) (Found: C, 56.5; H, 8.95; N, 7.7. C₁₆H₃₀LiN₂PSi₂ requires C, 55.8; H, 8.8; N, 8.15%), m.p. 115-126 °C. NMR (298 K, C₆D₆): ¹H, δ 0.17 (s, 9 H, SiMe₃); 0.34 (s, 9 H, SiMe₃); 0.84-1.05 (br, 3 H, PMe); 1.42-1.60 (br, 3 H, PMe); 3.69 (d, 1 H, CH, J = 26.3 Hz); 7.15 (s, 3 H), 7.47 (s, 2 H) (Ph). ${}^{13}C-{}^{1}H$, δ 3.80 (s), 4.06 (d, J=3.5) $(SiMe_3)$; 16.21 (d, J=45), 19.58 (d, J=60) (PMe); 77.55 (d, CH, J = 118.1; 127.68 (s), 128.65 (s), 128.76 (s), 147.42 (d, J = 14.4 Hz (Ph); 178.91 (s, Ph*C*). ³¹P-{¹H}, δ 17.61. ⁷Li-{¹H}, δ 0.67.

Li{N(H)C(Ph)C(H)P(Ph)₂=NSiMe₃} 3. Benzonitrile (0.4 cm³, 3.92 mmol) was added dropwise at ca. -50 °C to a diethyl ether (ca. 30 cm³) solution of Li{CH₂P(Ph)₂=NSiMe₃}, prepared from CH₃P(Ph)₂=NSiMe₃ (1.09 g, 3.80 mmol) and LiBuⁿ $(2.4 \text{ cm}^3 \text{ of a } 1.6 \text{ mol } \text{dm}^{-3} \text{ solution in hexane, } 3.84 \text{ mmol})$. The mixture was allowed to warm to room temperature and was stirred overnight, then filtered to remove some yellow precipitate. Volatiles were removed from the filtrate in vacuo and the solid residue was washed with pentane $(2 \times 15 \text{ cm}^3)$. Drying in vacuo yielded the free-flowing, pale yellow powder 3 (1.26 g, 84%) (Found: C, 69.7; H, 6.65; N, 6.95. C23H26LiN2PSi requires C, 69.7; H, 6.6; N, 7.05%), m.p. 206-208 °C. NMR (298 K, $C_6D_6 + 10\%$ [²H₈]thf): ¹H, δ 0.00 (s, 9 H, SiMe₃); 4.16 (d, 1 H, CH, J = 24.3 Hz); 4.43 (s, 1 H, NH); 7.08 (s), 7.22 (s), 7.79 (s), 7.84 (s) (Ph). ${}^{13}C-\{{}^{1}H\}$, δ 4.32 (d, SiMe₃, J=3.8); 67.93 (d, CH, J=78.1); 126.47 (s), 128.07 (d, J=11.3), 128.26 (s), 130.14 (d, J = 2.6), 132.44 (d, J = 9.9), 139.59 (d, J = 93.5), 148.53 (d, J = 11.8 Hz) (Ph); 175.88 (s, PhC). ³¹P-{¹H}, δ 14.84. ⁷Li-{¹H}, δ 0.68.

k{N(SiMe₃)C(Ph)C(H)P(Ph)₂=NSiMe₃} 4. Benzonitrile (0.28 cm³, 2.75 mmol) was added dropwise to a stirred solution of Li{CH(SiMe₃)P(Ph)₂=NSiMe₃] (see synthesis of 1) (1.0 g, 2.74 mmol) in diethyl ether (30 cm³) at -50 °C. The solution was allowed to warm to room temperature and was stirred for 4 h. The solvent was removed in vacuo and the resultant redbrown oil was redissolved in hexane (30 cm³). Solid KOBu^t (0.31 g, 2.77 mmol) was added with stirring at room temperature. After further stirring for 3 h, the mixture was filtered. The white precipitate was washed with hexane $(2 \times 20 \text{ cm}^3)$, then dried in vacuo leaving the white complex 4 (1.15 g, 84%) (Found: C, 61.4; H, 6.8; N, 5.25. C₂₆H₃₄KN₂PSi₂ requires C, 62.4; H, 6.85; N, 5.6%), m.p. 174-177 °C. NMR (298 K, C₅D₅N): ¹N, δ -0.17 (s, 9 H, SiMe₃); 0.12 (s, 9 H, SiMe₃); 4.42 (d, 1 H, CH, J = 25.8 Hz); 7.18–7.57 (m), 8.14–8.19 (m) (Ph). ¹³C-{¹H}, δ 3.69 (s), 4.68 (d, J=3.7) (SiMe₃); 76.31 (d, CH, J=129); 126.51 (s), 127.59 (d, J = 5.4), 127.98 (d, J = 11.0), 129.29 (s), 132.06 (d, J = 9.4), 141.59 (d, J = 95.1), 151.04 (d, J = 16.9 Hz) (Ph); 176.10 (s, PhC). ³¹P-{¹H}, δ 5.90.

K{N(SiMe₃)C(Ph)C(H)P(Ph)₂=NSiMe₃}(tmen) 5. Tetramethylethylenediamine (0.9 cm³, 5.97 mmol) was added dropwise to a stirred suspension of **4** (1.2 g, 2.4 mmol) in hexane (*ca.* 30 cm³) at room temperature. The solid dissolved gradually, yielding a pale yellow solution, which was concentrated to *ca.* 3 cm³ and set aside for several hours at room temperature to yield colourless crystals of compound **5** (1.19 g, 80%) (Found: C, 61.9; H, 8.0; N, 9.1. $C_{32}H_{50}KN_4PSi_2$ requires C, 62.3; H, 8.15; N, 9.1%), m.p. 111–113 °C. NMR (298 K, C_6D_6): ¹H, δ –0.12 (s, 9 H, SiMe₃); 0.19 (s, 9 H, SiMe₃); 1.91 (s, 12 H, tmen), 1.92 (s, 4 H, tmen); 4.40 (d, 1 H, CH, J = 25.7 Hz); 7.13–7.23 (m), 7.56–7.59 (m), 7.99–8.05 (m) (Ph). ¹³C-{¹H}, δ 3.70 (s), 4.68 (d, J = 3.9 Hz) (SiMe₃); 45.47 (s), 57.36 (s) (tmen); 76.38 (d, CH, J = 126.6); 126.94 (s), 127.68 (d, J = 6.1), 128.05 (d, J = 11.3), 129.49 (d, J = 2.6), 131.91 (d, J = 9.7), 140.84 (d, J = 95.7), 150.44 (d, J = 16.8) (Ph); 176.72 (d, Ph*C*, J = 3.9 Hz). ³¹P-{¹H}, δ 7.02.

N(SiMe₃)C(Ph)C(H)P(Me)₂N(SiMe₃)H 7. Water (0.2 cm³, 11.11 mmol) was added at -20 °C with stirring to a solution of $Li{N(SiMe_3)C(Ph)C(H)P(Me)_2=NSiMe_3}$ 1 (3.54 g, 10.03 mmol) in thf (20 cm³). The mixture was stirred for 30 min at room temperature. The thf was removed in vacuo and the residue was extracted with diethyl ether. The extract was filtered and the filtrate was concentrated in vacuo. Crystallisation of the residue from pentane yielded colourless crystals of 7 (2.87 g, 85%) (Found: C, 56.6; H, 9.15; N, 8.25. C₁₆H₃₁N₂PSi₂ requires C, 56.8; H, 9.25; N, 8.25%), m.p. 116-118 °C. NMR (298 K, CDCl₃): ¹H, δ -0.08 (s, 9 H, SiMe₃); 0.09 (s, 9 H, SiMe₃); 1.45 (d, 6 H, PMe₂, J=12.5); 3.83 (d, 1 H, CH, J=24.6 Hz); 7.29-7.38 (m, Ph); 8.39 (s, 1 H, NH). ${}^{13}C-{}^{1}H$, $\delta -0.02$ (s), 2.80 (d, J = 4.0) (SiMe₃); 20.47 (d, PMe, J = 64.3); 86.74 (d, CH, J = 114.3; 126.53 (s), 126.59 (s), 127.20 (s), 140.45 (d, J = 15.1) (Ph); 162.81 (d, Ph*C*, J = 10.0 Hz). ³¹P-{¹H}, δ 6.46. IR (Nujol): $v_{max}(cm^{-1})$ 3300–3650 (br) (NH), 1590s, 1609s (C=C, Ph), 1251s (P=N).

N(SiMe₃)C(Ph)C(H)P(Ph)₂N(SiMe₃)H 8. Similarly, as for 7, Li{N(SiMe₃)C(Ph)C(H)P(Ph)₂=NSiMe₃} 2, prepared from Li{CH(SiMe₃)P(Ph)₂=NSiMe₃} (1.32 g, 3.62 mmol) and PhCN (0.37 cm³, 3.63 mmol), was treated with H₂O (0.07 cm³, 3.89 mmol) to yield the pale yellow oil 8 (1.46 g, 87%) (Found: C, 67.2; H, 7.5; N, 5.4. C₂₆H₃₅N₂PSi₂ requires C, 67.5; H, 7.6; N, 6.05%). NMR (298 K, CDCl₃): ¹H, δ −0.08 (s, 9 H, SiMe₃); −0.05 (s, 9 H, SiMe₃); 4.32 (d, 1 H, CH, J = 23.2 Hz); 7.33–7.48 (m), 7.67–7.73 (m) (Ph); 8.29 (s, 1 H, NH). ¹³C-{¹H}, δ 0.00 (s), 2.51 (d, J = 3.9) (SiMe₃); 85.77 (d, CH, J = 118.5); 126.96 (d, J = 4.4), 127.44 (s), 129.00 (s), 129.77 (d, J = 4.6), 131.17 (d, J = 19.5), 136.33 (d, J = 94.8), 140.45 (d, J = 15.0 Hz) (Ph); 163.83 (s, Ph*C*). ³¹P-{¹H}, δ 3.99. IR (liquid film): v_{max}(cm⁻¹) 3300–3500 (br) (NH), 1567vs, 1588vs (C=C, Ph), 1256vs (P=N).

Crystallography

Crystallographic details are given in Table 2. Single crystals of complex **6** were mounted in Lindemann capillaries under argon. Data were collected on an Enraf-Nonius CAD4 diffractometer in the θ -2 θ mode with monochromated Mo-K α radiation ($\lambda = 0.710$ 73 Å). The structure was solved by direct methods (SHELXS 86)¹⁷ and refined by full-matrix least squares on all F^2 (SHELXL 93).¹⁸ All non-H atoms were anisotropic. The H atoms on N(2) and N(4) were located on a difference map and refined with U_{iso} (H) = 1.5 U_{eq} (N) and the N–H bond lengths restrained to 0.89 Å. Other H atoms were included in riding mode with U_{iso} (H) equal to 1.2 U_{eq} (C) or 1.5 U_{eq} (C) for methyl groups.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/482.
 Table 2
 Crystal data and refinement for complex 6

Formula	C H K N D S
	$C_{58}\Pi_{84}\Lambda_2 N_8 \Gamma_2 SI_2$
IVI Createl sustan	1089.0 Trialinia
Crystal system	$\frac{1}{2} \frac{1}{2} \frac{1}$
Space group	PI (no. 1)
	11.310(3)
D/A	11.856(5)
c/A	13.263(4)
$\alpha/^{\circ}$	70.51(3)
β/°	70.83(3)
γ/°	83.59(3)
U/A^3	1583.6(9)
Z	1
$D/g \text{ cm}^{-3}$	1.14
Crystal size/mm	0.2 imes 0.2 imes 0.2
Radiation $\lambda/Å$	0.710 73
F(000)	584
μ (Mo-K α)/mm ⁻¹	0.28
Temperature/K	293(2)
Total reflections	5553
Independent reflections	5553
Reflections with $I > 2\sigma(I)$	3319
$R1 [I > 2\sigma(I)]^{a}$	0.067
wR2 (all data) ^b	0.174
^a $R1 = \Sigma F_{o} - F_{c} / \Sigma F_{o} $. ^b $wR2 = [\Sigma w(F_{o})^{2}]$	$(F_{c}^{2}-F_{c}^{2})^{2}/\Sigma w F_{o}^{4}]^{\frac{1}{2}}.$

Acknowledgements

We thank the Chinese Government and the British Council for the award of a studentship (to Z.-X. W.), the Leverhulme Trust for the award of an Emeritus Fellowship (to M. F. L.), Dr. F. Reed (FMC) for *n*-butyllithium and EPSRC for other support.

References

- 1 H.-J. Cristau, Chem. Rev., 1994, 94, 1299.
- 2 J. Barluenga, F. Lopez and F. Palacios, *J. Chem. Res.*, 1985, (*S*) 211; (*M*) 2541.
- 3 A. K. Roy, U. G. Wettermark, G. M. Scheide, P. Wisian-Neilson and R. H. Neilson, *Phosphorus Sulfur Relat. Elem.*, 1987, **33**, 147.
- 4 K. D. Gallicano, R. T. Oakley, N. L. Paddock and R. D. Sharma, *Can. J. Chem.*, 1981, **59**, 2654.
- 5 H. Schmidbaur and G. Jonas, Chem. Ber., 1967, 100, 1120.
- 6 U. G. Wettermark, P. Wisian-Neilson, G. M. Scheide and R. H. Neilson, *Organometallics*, 1987, **6**, 959.
- 7 A. K. Roy, R. Hani, R. H. Neilson and P. Wisian-Neilson, Organometallics, 1987, 6, 378.
- 8 J. Barluenga, F. Lopez and F. Palacios, J. Chem. Soc., Chem. Commun., 1985, 1681.
- 9 S. O. Grim and P. B. Kettler, J. Chem. Soc., Chem. Commun., 1991, 979.
- 10 J. Barluenga, F. Lopez and F. Palacios, Synthesis, 1988, 562.
- 11 P. B. Hitchcock, M. F. Lappert and Z.-X. Wang, *Chem. Commun.*, in the press.
- 12 P. B. Hitchcock, M. F. Lappert and D.-S. Liu, J. Chem. Soc., Chem. Commun., 1994, 2637.
- 13 P. B. Hitchcock, M. F. Lappert and D.-S. Liu, J. Chem. Soc., Chem. Commun., 1994, 1699.
- 14 See, for example, D. E. C. Corbridge, *Phosphorus*, Elsevier, Amsterdam, 1985.
- 15 P. Imhoff, R. van Asselt, C. J. Elsevier, K. Vrieze, K. Goubitz, K. F. van Malssen and C. H. Stam, *Phosphorus, Sulfur Silicon Relat. Elem.*, 1990, **47**, 401.
- 16 J. C. Wilburn and R. H. Neilson, Inorg. Chem., 1979, 18, 347.
- 17 G. M. Sheldrick, SHELXS 86, a package for the solution of crystal structures, University of Göttingen, 1985.
- 18 G. M. Sheldrick, SHELXL 93, a package for crystal structure refinement, University of Göttingen, 1993.

Received 12th December 1996; Paper 6/08355B